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1 Simply Connected Domains and Cauchy’s theorem

1.1 Simply connected domains

Definition 1.1. A cycle γ ⊆ Ω is homologous to 0 if n(γ, z) = 0 for all z /∈ Ω.

We write γ ∼ 0. We also say that γ ∼ γ2 if γ1 − γ2 ∼ 0, which is iff n(γ1, z) = n(γ2, z)
for al z /∈ Ω.

Theorem 1.1 (Cauchy’s theorem, general form). Let Ω be a domain and γ ⊆ Ω be a C1

cycle. If γ ∼ 0, then ∫
γ
f(z) dz = 0

for all g ∈ H(Ω).

We can also restate this with 1-forms.

Definition 1.2. A 1-form P dx+Qdy is closed if P,Q ∈ C1, ∂P
∂x = ∂Q

∂y , ∂P
∂y = −∂Q

∂x .

Theorem 1.2. Let Ω be a domain and γ ⊆ Ω be a C1 cycle. If γ ∼ 0, then∫
γ
P dx+Qdy = 0

for all closed 1-forms P dx+Qdy.

Remark 1.1. We don’t necessarily need γ to be C1. It can, for example, be polygonal.

Corollary 1.1. Let Ω be a domain. The following are equivalent:

1. Ω is simply connected.

2. If f ∈ H(Ω) satisfies f(z) 6= 0 for all z ∈ Ω, then there exists g ∈ H(Ω) such that
f = eg.
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Proof. ( =⇒ ): Note that ∫
γ

f ′

f
dz = 0.

So we can set

g(z) =

∫ z

z0

f ′(w)

f(w)
dw.

(⇐= ) If |Omeag is not simply connected, let f = z − a with a /∈ Ω. THen∫
γ

1

z − a
dz 6= 0

for some γ. So there is no such g.

Corollary 1.2. Let Ω be a domain. The following are equivalent:

1. Ω is simply connected

2. For all harmonic u : Ω→ R there exists a harmonic v such that u+ iv ∈ H(Ω).

Proof. Assume Ω is imply connected. Then let du = ux dx+uy dy and ∗du = −uy dx+ux dy.
Condition 2 is equivalent to the existence of a harmonic v such that ux = vy and uy = −vx.
Observe that u is harmonic iff ∗du is closed. So∫

γ
−uy dx+ ux dy = 0

for all closed γ. Then let

v(z) =

∫ z

z0

−uy dx+ ux dy

this is well defined, and makes v harmonic.

Example 1.1. Let a /∈ Ω. Then ∫
γ

1

z − a
6= 0

for some γ. If we set u = log |z − a|, then ∗du = 1
z−a dz.

1.2 Proofs of general Cauchy’s theorem

Let’s prove Cauchy’s theorem.
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Proof. There exists R > 0 such that γ ⊆ ΩR = Ω ∩ {z : |x| < R, |y| < R}. Let δ ≤
dist(γ, ∂ΩR)/

√
2. In particular, we can take δ = R/n for some n ∈ N. We can pave the

square {z : x ≤ R, y ≤ R} by squares Sj of side length δ with sides parallel to the axes.
Now let Ωδ = (

⋃
sj⊆ΩR

Sj)
o, and let Γδ =

∑
Sj⊆ΩR

∂Sj , after cancelling opposing arcs.

If ζ ∈ Γδ, there exists some a /∈ ΓR such that [a, ζ],∩Ωδ = ∅. Also, γ ⊆ Ωδ. So for
z ∈ γ,

f(z) =
1

2πi

∫
Γδ

f(z)

z −−ζ
dζ

because we can cancel all the boundaries of the squares to get the integral over Γδ. Then,
using Fubini’s theorem, ∫

γ
f(z) dz =

∫
γ

1

2πi

∫
γδ

f

ζ
ζ − z dζ dz

=

∫
Γδ

f(ζ)
1

2πi

∫
γ

1

ζ − z
dz︸ ︷︷ ︸

=0

dζ

where this term equals zero because the winding number is zero.

Theorem 1.3 (Runge). Let K ⊆ C be compact, and let K ⊆ U , where U is open. Let
f ∈ H(U). Then there exists a sequence (Rn(z))n∈N of rational functions with poles outside
U such that

sup
K
|f(z)−Rn(z)| n→∞−−−→ 0.

Runge’s theorem implies the Cauchy integral formula. Here is a proof.

Proof. By polynomial division, we can write

Rn = Pn(z) +
M∑
k=1

ck
(z − zk)nk

,

so since zk /∈ U , we get that ∫
γ
Rn(z) dz = 0.

By uniform convergence, ∫
γ
f(z) dz =

∫
γ
Rn(z) dz = 0.

How do you prove Runge’s theorem? Use the same square method we used for the
proof of Cauchy’s theorem.1

1There is also a really interesting proof of Runge’s theorem in my Functional Analysis (Math 255A)
lecture notes. Although it seems to rely on Cauchy’s theorem.
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