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1 Simply Connected Domains and Cauchy’s theorem
1.1 Simply connected domains
Definition 1.1. A cycle v C Q is homologous to 0 if n(y, z) =0 for all z ¢ Q.

We write v ~ 0. We also say that v ~ 79 if 3 — 72 ~ 0, which is iff n(y1, z) = n(y2, 2)
for al z ¢ Q.

Theorem 1.1 (Cauchy’s theorem, general form). Let Q be a domain and v C Q be a C!

cycle. If v ~ 0, then
/f(z) dz=0
.

for all g € H(Q).
We can also restate this with 1-forms.
Definition 1.2. A I-form Pdz + Qdy is closed if P,Q € C?, 38 = 52 98 — _Z2.

Theorem 1.2. Let Q be a domain and v C Q be a C* cycle. If v ~ 0, then
/Pd:n +Qdy=0
v

for all closed 1-forms Pdx + Q dy.
Remark 1.1. We don’t necessarily need 7 to be C!. It can, for example, be polygonal.
Corollary 1.1. Let 2 be a domain. The following are equivalent:

1. Q is simply connected.

2. If f € H(Q) satisfies f(z) # 0 for all z € Q, then there exists g € H(Y) such that
f=e9.



Proof. (= ): Note that

So we can set

* f(w)
g(z) = dw.
“= 1, Fw)
(<= If |Omeag is not simply connected, let f = z — a with a ¢ Q. THen
1
/ dz #0
v Z—a
for some «. So there is no such g. O

Corollary 1.2. Let Q be a domain. The following are equivalent:
1. Q is simply connected
2. For all harmonic u : Q — R there exists a harmonic v such that u 4+ iv € H(Q).

Proof. Assume (1 is imply connected. Then let du = u, dx+u, dy and *du = —u, dr+u, dy.
Condition 2 is equivalent to the existence of a harmonic v such that u, = v, and uy = —v;.
Observe that u is harmonic iff *du is closed. So

/—uyd:v—i-uxdy:O
.

for all closed . Then let
v(z) = / —Uy dT + Uz dy
20

this is well defined, and makes v harmonic. ]

/},Zia#o

for some 7. If we set u = log |z — a|, then xdu = - dz.

Example 1.1. Let a ¢ Q. Then

1.2 Proofs of general Cauchy’s theorem

Let’s prove Cauchy’s theorem.



Proof. There exists R > 0 such that v C Qr = QN{z : [z]| < R,|ly] < R}. Let § <
dist(vy, 0Qr)/v/2. In particular, we can take § = R/n for some n € N. We can pave the
square {z : < R,y < R} by squares S; of side length § with sides parallel to the axes.
Now let Q5 = (UsngR S;)°, and let T's = ZSjQQR 05Sj, after cancelling opposing arcs.

If ¢ € Ty, there exists some a ¢ 'y such that [a,(],NQs = &. Also, v C Qs. So for

zZE7,
f)= o [ L2

27 r, 2 — —C

d¢

because we can cancel all the boundaries of the squares to get the integral over I's. Then,
using Fubini’s theorem,

_ [ 1 f
Af(Z)dz—Lzﬂi 5 EC—zd(dz
1 1
- Féf(C)QTI"l/;C—ZdZdC

N— ——
=0

where this term equals zero because the winding number is zero. O

Theorem 1.3 (Runge). Let K C C be compact, and let K C U, where U is open. Let
f € HU). Then there exists a sequence (R, (2))nen of rational functions with poles outside
U such that

sup /(=) = Ru(2)] === 0.

Runge’s theorem implies the Cauchy integral formula. Here is a proof.

Proof. By polynomial division, we can write

so since z ¢ U, we get that
By uniform convergence,

O

How do you prove Runge’s theorem? Use the same square method we used for the
proof of Cauchy’s theorem.!

'There is also a really interesting proof of Runge’s theorem in my Functional Analysis (Math 255A)
lecture notes. Although it seems to rely on Cauchy’s theorem.
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